R16 Q.P. Code: 16EC403

Reg. No:					
----------	--	--	--	--	--

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech II Year I Semester Supplementary Examinations Feb-2021 SIGNALS AND SYSTEMS

		(Electronics and Communication Engineering)					
-	Γime:	3 hours Max. Marks	s: 60				
		(Answer all Five Units $5 \times 12 = 60$ Marks)					
		UNIT-I					
	1	a Check whether the following systems are causal or not?	6M				
		(i) $y(t)=x_2(t)+x(t-3)$ (ii) $y(t)=x(t+2)$ (iii) $y(t)=x(-2t)$					
		b Sketch the following signals	6M				
		(i) $u(-t+2)$ (ii) $-4r(t)$ (iii) $r(-t+3)$					
	2	a Discuss about LTI system.	6M				
	_	b Explain the classification of signals with examples.	6M				
		UNIT-II					
	3	a Find the Fourier transform of the following signals	6M				
		(i) $x(t) = Sinc(t)$ (ii) $x(t) = e^{-at}u(t)$	OIVI				
		b State and prove the convolution and multiplication properties of Continuous time	6M				
		Fourier transform?					
		OR	(D.F.				
	4	a State and prove the time shifting and frequency shifting properties of discrete time Fourier Transform.	6M				
		b Find the inverse Fourier transform of	6M				
		$X(\omega) = \frac{4j\omega + 6}{(j\omega)^2 + 6j\omega + 8}$	OIVI				
		UNIT-III					
	5	a Derive the transfer function and impulse response of an LTI system.b State and prove sampling theorem for band limited signals.	6M				
		OR	6M				
	6	a Let the system function of an LTI system be $1/(j\omega+2)$, what is the output of the system	8M				
		for an input $0.8^t u(t)$?					
		b Discuss about aliasing					
		UNIT-IV					
	7	a Show that R(r) and PSD form Fourier transform pair.	6M				
		b Explain the detection of periodic signals in the presence of noise by cross correlation.	6M				
	0	OR	CN #				
	8	a Find the Convolution of $x_1(t) = u(t)$ and $x_2(t) = u(t+2)$	6M				
		b State and prove the Parseval's theorem for energy signal. UNIT-V	6M				
	9		6M				
	9	a State and prove initial and final value theorems of Z-transform b Find the Laplace transform of i) $x(t) = e^{-at}cos(\omega_0 t)u(t)$ ii) $x(t) = te^{-at}u(t)$	6M 6M				
		OR	OIVI				
	10	a State and prove the i) integration in time ii) differentiation in time properties of	6M				
		Laplace transform.					
		b Determine the inverse Z-Transform of $X(z) = log_e(\frac{1}{1-az^{-1}})$; ROC Z >a.	6 M				
		*** END ***					